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Introduction

Computer-aided drug design (CADD) is a rapidly growing field that combines the knowledge of computa-
tional chemistry, bioinformatics, and pharmacology to aid in the discovery and development of new drugs.
CADD utilizes various computational techniques and tools such as molecular modeling, docking, and
machine learning (ML) to predict the properties and interactions of potential drug compounds with their bio-
logical targets (Baig et al., 2018). One of the significant advantages of CADD is its ability to significantly
reduce the time and cost of drug development by allowing for the virtual screening of many compounds in
silico instead of relying solely on experimental methods, which can also reduce the number of compounds
that must be tested in animal models and clinical trials (Kimber et al., 2021). As a result, CADD has
become an essential tool in modern pharmaceutical research (Song et al., 2009). Molecular dynamics (MD)
simulations, which may foretell the motion and interactions of atoms and molecules in a biological system,
and docking, which can foretell the binding of a medicinal compound to its target protein, are two examples
of CADD techniques. Atrtificial neural networks (ANNs) and random forests are two ML techniques used
in CADD for various tasks, including virtual screening, lead optimization, absorption, distribution, metabo-
lism, and excretion (ADMET) prediction (Lavecchia, 2019; Talevi, 2018). Several CADD techniques can
be utilized at different stages of the drug research and development process, including:

* Homology modeling: Homology modeling can be used to predict the structure of a protein
when the structure of a related protein is known and can be used to understand the binding of
drug compounds to the protein (Krieger et al., 2003).

* Virtual screening: To find compounds that might have the needed activity, a large number of
compounds are computationally screened against a target protein, this process is known as
virtual screening. It can be done using various techniques, such as molecular docking with
various sampling algorithms, and recent trends are shown in the use of ML, which uses
descriptors to learn and screen (Walters et al., 1998).

* Denovo drug design: De novo drug design is the computational design of new molecules with
the desired activity against a target and can generate new candidates for drug development
using various artificial intelligence (Al)-based models such as generative adversarial networks
(GAN) (Popova et al., 2018).
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* Molecular docking: Docking methods can predict the binding of a drug compound to its target
protein and can be used to identify potential binding sites and evaluate the strength of the
binding (Ahmad, 2022; Yadav, 2022).

e ML: In CADD, ML techniques can be used for tasks such as virtual screening, lead
optimization, and ADMET prediction (Yadav, 2022).

e MD simulations: The MD simulations can predict the movement and interactions of atoms and
molecules in a biological system, which can help in understanding the mechanism of drug-
target interactions (DTIs) (Ahmad, Pasha Km, et al., 2022; Karwasra, Ahmad, et al., 2022; Kaul
et al., 2020; Khan et al., 2021).

Overall, CADD can be used throughout the drug discovery and development process and in
combination with experimental methods to aid in discovering and developing new drugs
(Cardoso, 2018; Macalino et al., 2015). The basic workflow of CADD is depicted below in
Fig. 12.1.

12.1.1 Drug designing approaches

Two primary methods are being used for computational drug design based on the known structure
of the protein or ligand that are-

12.1.1.1 Structure-based drug design

The structure-based drug design (SBDD) uses the 3D structure of a target protein to design new
compounds that bind to the protein and have the desired activity, and it uses techniques such as
molecular docking or virtual screening of the compound library. SBDD is a drug discovery
approach that uses the 3D structure of a biological target (usually a protein) to design small
molecules that can interact with the target and modulate its activity. This approach allows scien-
tists to design more specific and potent drugs with fewer side effects than traditional drugs
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FIGURE 12.1
Showing the basic workflow of computer-aided drug design.
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(Ahmad, Bano, et al., 2022; Alturki et al., 2022; Alzamami et al., 2022). The process of SBDD
typically involves several steps, including:

* Identifying the target protein: The first step in SBDD is to identify a protein or macromolecule
involved in a disease process that a drug could target (Yano et al., 2001).

* Determination of the 3D structure: The following stage is to ascertain the target protein’s 3D
structure using methods like X-ray crystallography, NMR spectroscopy, or cryo-electron
microscopy (Karwasra, Khanna, et al., 2022; Tripathi et al., 2022).

* Identifying binding sites: Once the protein structure is known, potential binding sites can be
identified where small molecules could bind and modulate the protein’s activity.

* Virtual screening: Computer algorithms and databases of small molecules are used to search
compounds to predict to bind to the identified binding sites on the protein (Kimber et al., 2021;
Walters et al., 1998).

* Optimization of leads: The most promising compounds identified from virtual screening are
further optimized through iterative cycles of molecular modeling, synthesis, and testing to
improve their potency, selectivity, and pharmacokinetic properties (Tripathi et al., 2022).

* Preclinical testing: Once a lead compound has been optimized, it undergoes extensive
preclinical testing to evaluate its safety, efficacy, and pharmacokinetics in animal models.

* Clinical testing: If a drug candidate passes preclinical testing, it can be evaluated in clinical
trials to determine its safety and efficacy in humans.

12.1.1.2 Ligand-based drug design

Ligand-based drug design (LBDD) uses the known binding properties of a ligand to a target protein
to predict and design new compounds with similar properties. It uses the quantitative structure-
activity relationship (QSAR) and various ML-based models to screen the compounds and predict
the properties based on learning the models involving various ML techniques. Currently, the
researchers are incorporating various deep learning (DL)-based techniques that learn itself and pre-
dict the best compounds. LBDD is a drug discovery approach that designs small molecules that can
interact with a target protein by using information about known ligands’ chemical and physical
properties (molecules that bind to the target protein) (Bacilieri & Moro, 2006; Tripathi et al.,
2022). LBDD does not require knowledge of the 3D structure of the target protein, making it a
practical approach for identifying potential drug candidates when the protein structure is unknown
or difficult to determine. The process of LBDD typically involves several steps, including:

* Identification of a known ligand: The first step in LBDD is identifying a known ligand that
binds to the target protein.

* Analysis of ligand properties: The chemical and physical properties of the known ligand are
analyzed to identify key features that contribute to its binding to the target protein. These
properties may include the ligand’s size, shape, charge distribution, and functional groups.

* Design of new ligands: Based on the analysis of the known ligand, new molecules are designed
that are predicted to have similar chemical and physical properties and can bind to the target
protein.

* Optimization of leads: The most promising new ligands are then further optimized through
iterative cycles of molecular modeling, synthesis, and testing to improve their potency,
selectivity, and pharmacokinetic properties.
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* Preclinical and clinical testing: Once a lead compound has been optimized, it undergoes
extensive preclinical testing to evaluate its safety, efficacy, and pharmacokinetics in animal
models. If a drug candidate passes preclinical testing, it can be evaluated in clinical trials to
determine its safety and efficacy in humans.

Why deep learning in computer-aided drug design?

DL, an emerging field of Al, is also a subfield of ML that uses ANNs with multiple layers, also
known as deep neural networks (DNNSs), to learn from data. These networks are designed to auto-
matically learn complex, nonlinear relationships from substantial amounts of data, making them
well-suited for tasks such as image recognition, speech recognition, and natural language proces-
sing. DL models are trained using a process called backpropagation, where the model is presented
with input data and the corresponding output, and the model’s parameters are adjusted to minimize
the difference between the predicted output and the actual output (Bajorath, 2022; Vamathevan
et al., 2019). This process is repeated with multiple data sets, allowing the model to learn and
improve over time. The number of layers a network has determines its depth; the deeper a network,
the more complicated problems it can answer. Due to their capacity to learn from large volumes of
data, DL models are exceptionally well suited for activities like computer-aided drug creation,
where a large quantity of data is needed to train the model and generate precise predictions (Dara
et al., 2022). DL layers are the building blocks of a DNN. They are used to extract features from
the input data and transform it into a representation that can be used to make predictions or deci-
sions. There are several types of DL layers, including:

* Convolutional layers: These layers are used to extract features from image data. They use
convolutional filters to scan the input image and extract features such as edges and textures.

* Recurrent layers: These are used to process sequential data, such as time series or natural
language. They maintain a hidden state passed from one time step to the next, allowing the
network to “remember” information from previous time steps.

* Fully connected layers: These layers are used to make predictions or decisions based on the
features extracted by the previous layers. They are also called dense layers and are used to
classify the input data.

* Pooling layers: These layers reduce the spatial dimensions of the input data, allowing the
network to focus on the most prominent features.

* Normalization layers: These are used to normalize the input data and ensure that it has the same
scale and distribution.

* Dropout layers: They prevent overfitting by randomly dropping out some neurons during
training.

These DL layers are typically hidden in a DNN. The input data are passed through multiple
layers of the network, with each layer extracting features from the input and transforming it into a
new representation. The final output is produced by one or more fully connected layers that use the
features extracted by the hidden layers to make predictions or decisions. The hidden layers are
called so because they are not directly connected to the input or output, and the computations hap-
pening in these layers are not visible to the user (Ahmad et al., 2023). These layers are used to
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An illustration of a basic deep neural network architecture.

learn the abstract representation of the input data, which is then used by the final output layers to
make predictions or classifications. A basic architecture of a DL model is illustrated in Fig. 12.2.

DL can significantly improve the efficiency and effectiveness of CADD. Some of the promises
of DL in CADD include the following:

* Improving the accuracy of predictions: DL models can automatically learn complex, nonlinear
relationships from large amounts of data, leading to more accurate predictions of the properties
of drug candidates, such as binding affinity and toxicity. Several studies have demonstrated the
potential of DL in improving the accuracy of predictions in CADD. In a study, a model for
predicting DTTIs is based on local residue patterns of involved proteins (Lee et al., 2019). In
order to locally capture the residue patterns of generalized protein classes, this study developed
a convolutional neural network (CNN) model that was applied to raw protein sequences with
varied convolution over lengths of amino acid occurrences. Pooled convolution data were
carefully examined, and the findings demonstrated that the model accurately identified protein
binding sites for DTIs.
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* Identifying new drug candidates: DL can analyze large libraries of compounds to identify new
drug candidates with the desired properties. Several studies have demonstrated the potential of
DL in identifying new drug candidates in CADD. In order to find medication candidates with
the desired property outside of a data set range, a study suggested a conditional variational
autoencoder (CVAE) as a generative model (Joo et al., 2020). Instead of training the model
with various physical attributes for each molecule individually, this study discussed the role of
molecular fingerprints and GI50 (inhibition of growth by 50%) connected to breast cancer cell
lines. The CVAE model represented the desired attribute using the generated fingerprints, which
were not part of the training data set.

* Reducing the time and resources required for drug discovery: DL models can analyze large
amounts of data quickly and accurately, significantly reducing the time and resources required
for drug discovery. Several recent studies have investigated the use of DL in CADD. In a study,
a Transformer neural network architecture, a state-of-the-art approach, was suggested to handle
the problem of the lengthy and costly process of drug discovery with sequence transduction
tasks (Grechishnikova, 2021). This paper proposes a model that uses a self-attention strategy to
capture long-range relationships between objects in succession. The model creates novel
chemical structures with valuable features, perhaps requiring less time and money to develop
new drugs.

* Overcoming the limitations of traditional methods: DL can overcome the limitations of
traditional, rule-based methods, which can be limited by the number of known examples or the
complexity of the relationships they can capture. Several studies have investigated how DL can
overcome the limitations of traditional methods in CADD. DL’s scope, developments, and
difficulties in drug design and discovery were described in a review, with multiple experiments
involving QSAR and virtual screening of repositories with thousands of compounds (Lipinski
et al., 2019). This review article also discusses how DL can overcome the limitations of
traditional methods in various stages of drug discovery.

* Identifying potential side effects and drug—drug interactions (DDIs): DL can be used to analyze
substantial amounts of data from patient records and other sources to identify potential side
effects of drugs and predict DDIs. Several studies have investigated the use of DL to predict
potential side effects and DDIs in CADD. A multimodal DL framework (DDIMDL) was
introduced in a study, considering various drug features combined with DL to build a model for
predicting DDI-associated events (Deng et al., 2020). The model described in this article first
builds several DNNs-based submodels utilizing just four types of pharmacological features:
chemical substructures, targets, enzymes, and linked pathways, and then adopts a common DNN
framework. In order to learn cross-modality representations of drug-drug pairs and forecast DDI
events, it then integrates the submodels.

* Guiding the design of clinical trials: DL can be used to analyze data from clinical trials to guide
the design of future trials and improve the chances of success. Several studies have investigated
the use of DL to guide the design of clinical trials in CADD. Recent advances in Al were
outlined in a review, and the key role of DL models used to reshape key steps of clinical trial
design toward increasing trial success rates was discussed. It is important to note that while the
studies included in the review show promise, there is still much work to be done to validate
these models in real-world clinical trials and address issues such as interpretability and bias.
Overall, DL has the potential to revolutionize the field of CADD by automating the process of
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identifying new drug candidates, predicting their properties, and guiding the design of clinical
trials, leading to the development of more effective drugs in a shorter amount of time
(Krittanawong, 2022; Nagendran, n.d.).

Role of deep learning in computer-aided drug design

CADD integrates ligand-receptor interaction’s biological and chemical information to unravel how
well the ligand fits within the active site. The main objective of CADD is to hypothesize certain
modifications in ligands in the form of chemical or functional group changes to lower energetic
potential for improving the electrostatic complementarity of the ligand with the receptor. Since
drug discovery and development is time-consuming, expensive, complex, and highly risky, it
plunged the need and advent of CADD (Bajorath, 2022). Modern-day Al methods, especially DL,
are taking up drug discovery and development space to accelerate the drug discovery and develop-
ment process. DL is a subset of Al that aims at learning data precisely and provides a fruitful inter-
pretation of data. Since a considerable amount of data is being produced by molecular biology, the
DL is taking advantage of such vast volumes of data and high computational power availability to
solve complexities associated with CADD. For learning model-internal representations from molec-
ular structure, graph-based DNNs are extensively utilized in current times. DL helps to reduce the
data requirements for making fruitful predictions and helps identify unknown ligand-receptor
mechanisms. One of the essential components of CADD is virtual screening (Gawehn et al., 2016).
DL extensively investigates a huge database of known 3D structures and evaluates them to select
precise targets and accurately predict binding positions. DL can potentially predict numerous phar-
macokinetic properties of drug-like molecules such as ADME. DL in the form of DNN is revolu-
tionizing the field of proteochemometric studies. DL can learn structure representations directly
without using any structure descriptors, which is employed to accelerate CADD (Anighoro, 2022).
DL is making heavy inroads in retrosynthesis and reaction prediction studies. Deep CNN predicts
protein-ligand interactions by scoring protein-ligand interactions. Image analysis is crucial at vari-
ous stages of CADD. DL is leaving its footprints in the analysis of biological images to unravel
mysteries behind protein-ligand interactions and drug mechanisms (Bai et al., 2022). DL is taking
structure-based virtual screening to the next level due to the availability of high-quality models and
also playing an immense role in de novo protein structure prediction, as shown in Fig. 12.3. Thus
we can say that DL plays an indispensable role in the field of CADD and will continue to acceler-
ate drug discovery, thereby reducing the time and cost involved in bringing a drug from the Lab to
the bed (Barbhuiya et al., n.d.; Sabe et al., 2021).

DL has the potential to revolutionize drug discovery by accelerating the identification of promis-
ing drug candidates, reducing costs, and improving the success rate of drug development. However,
developing and validating reliable DL models for drug discovery remains challenging, and careful
evaluation is required to ensure the reliability of predictions made by these models. In the field of
CADD, which refers to the use of computational tools and models to find, create, and optimize
novel medicinal compounds, DL has many uses in CADD, some of which are covered below:

* Virtual screening: The binding affinity of small compounds to protein targets can be predicted
using DL, and it can be accomplished by using a large dataset of known DTIs to build a DL
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The left hand of this figure displays the role of DL at various stages of CADD, and the right-hand side displays
different DL algorithms like DNN, CNN, RNN, and autoencoder. CADD, Computer-aided drug design; CNN,
convolutional neural network; DL, deep learning; DNNs, deep neural networks.

model. The trained model can then determine the predicted binding affinity of novel compounds
to target proteins. In order to find potential drug candidates for further development, this can be
a helpful technique.

Molecular generation: New pharmacological compounds tailored for particular target proteins
can be created using DL, and it can be accomplished by using a massive dataset of well-known
pharmacological compounds and their related properties to train a DL model. The novel
compounds can then be created using the learned model and tailored for particular target
proteins.

SBDD: DL can forecast protein targets’ 3D structures. A DL model can be trained on a sizable
dataset of well-known protein structures to accomplish this. The structure of new protein targets
can be predicted using the trained model. This can be a valuable technique for creating
medications tailored for particular protein targets.

ADME prediction: The ADMET characteristics of pharmacological compounds can also be
predicted using DL. A DL model can be trained using a sizable dataset of known drug
compounds and the related ADME features. The ADME properties of fresh drug candidates can
then be predicted using the learned model.

Multitask learning: DL is used to predict several drug molecules, including binding affinity,
solubility, and toxicity, and it can be accomplished by using a massive dataset of
pharmacological compounds and their related attributes to build a DL network. The trained
model can then be used to predict several features of novel drug candidates simultaneously.
Transfer learning: DL can transfer knowledge from one drug discovery task to another. For
example, a DL model trained on one protein target can be fine-tuned to predict the binding
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affinity of another protein target. This can be a valuable tool in drug discovery, mainly when
data are limited for a particular target.

* Drug repurposing: DL can be utilized to find novel therapeutic applications for already
available medications, and it can be accomplished by using a huge dataset of pharmacological
compounds and their related attributes to build a DL network that can be utilized to find novel
therapeutic applications for already available medications. It can be accomplished using a
massive dataset of pharmacological compounds and their related attributes to build a DL
network. The trained model can then predict the therapeutic uses of existing drugs not initially
developed for that purpose.

* Interpretability: DL models can provide insights into the mechanism of action of drug
molecules. For example, DL. models can identify the key features of drug molecules responsible
for their binding affinity to target proteins. It can provide insights into the underlying biology of
the disease and inform drug discovery efforts.

Overall, by accurately predicting important characteristics of therapeutic compounds and protein
targets, DL has the potential to speed up the drug discovery process dramatically. However, it is
crucial to remember that DL models are only as good as the data they are trained on. Therefore,
proper validation is necessary to guarantee the accuracy of DL model predictions in CADD.

Software tools, web servers, and package

DL is a rapidly growing field that has led to significant advancements in various applications,
including drug discovery. A key aspect of DL is the availability of powerful tools, web servers, and
packages that enable researchers and developers to implement and deploy DL models quickly. This
survey aims to provide an overview of the current state-of-the-art DL tools, web servers, and
packages (Barbhuiya et al., 2022). The focus is also on the most popular and widely used tools and
platforms that comprehensively evaluate their language and models. The survey will cover various
topics, including DL tools, frameworks, and web servers for deploying DL models and packages
for various applications. The goal is to provide a comprehensive resource for researchers, develo-
pers, and practitioners in the DL field and help them make informed decisions when choosing the
right tools and platforms for their projects. It is important to note that drug design and discovery
are rapidly evolving, and new tools and web servers are constantly being developed. Moreover, the
list of DLBDD tools, web servers, and software packages discussed in this section is the result of a
survey and may contain results based on some bias related to the discussed parameters.

Parameters

Several parameters were considered to evaluate these tools, web servers, and software packages-

Algorithm: Different tools and web servers use different algorithms to predict the binding
affinity of small molecules for a protein target or to predict the activity of small molecules against
different targets. It is essential to understand the algorithm used in a tool or webserver and whether
it suits the specific use case.
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* Language: The tools, web servers, and software packages are implemented in different
programming languages.
* Database: Some web servers provide access to large databases of small molecules, which can be
helpful for virtual screening and data size and quality matters.
» Performance: Different tools, web servers, and software packages have different performance
characteristics. When evaluating a tool or web server, it is essential to consider factors such as
accuracy, speed, and scalability.
* User interface: The user interface of a tool or webserver can affect its ease of use and
accessibility. It is essential to consider whether the user interface is intuitive and easy to use
when evaluating a tool or web server.
* Cost: Some tools, web servers, and software packages are open-source and freely available,
while others are commercial and require a license. It is essential to consider a tool’s or web
server’s cost when evaluating it.
* Support: Different tools, web servers, and software packages have different levels of support
available. When evaluating it, it is essential to consider whether good documentation and
support are available for a tool or web server.

Tools

The tools considered in this survey are listed in Table 12.1. This list is not exhaustive; new tools
and web servers may be developed to suit the specific use case better.

S. no.

1
2

9
10

Name

DeepDTA
MolDQN

DeepChem
MolNetEnhancer
DeepSite
Pafnucy
GENTRL

MolCycleGAN

Deep Docking
DeepDrug3D

Description

A DL-based tool for predicting drug-target interactions

Reinforcement learning-based tool for virtual screening of
small molecules

An open-source toolkit for DL in drug discovery and
materials science

A DL-based tool for enhancing molecular representations
A DL-based tool for predicting protein-ligand binding sites
DL-based tool for predicting protein-ligand binding affinity

A DL-based tool for drug discovery and design

A DL-based tool for generating new small molecules using
a GAN model

DL platform for Augmentation of SBDD
A DL-based tool for drug design and discovery

Table 12.1 Tools using deep learning models for processes included in drug discovery.

References

Oztiirk et al. (2018)

Zhenpeng et al.
(2019)

Ramsundar
(2016, 2019)

Ernst et al. (2019)
Zeng et al. (2020)

Trott and Olson
(2010)

Zhavoronkov et al.
(2019)

Maziarka et al.
(2020)

Gentile et al. (2020)
Pu et al. (2019)

SBDD, Structure-based drug design.
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Table 12.2 Software Packages implementing deep learning models for processes in drug
discovery.
S. no. | Name Description Sources
1 RDKit Python-based Cheminformatics and ML tools https://www.rdkit.org/
2 Open Babel [ A C++ chemical toolbox designed to speak the many | http://openbabel.org/
languages of chemical data
3 Keras A Python-based high-level neural networks API https://keras.io/
Theano Python library that allows defining optimizing, and http://deeplearning.net/
evaluating mathematical expressions software/theano/
5 MATLAB Interactive environment for numerical computation https://www.mathworks.com/
and visualization products/matlab.html
Packages

A list of some libraries and software packages for DL-based drug design, along with their associ-
ated language, algorithm, and references, has been listed in Table 12.2. This is not an exhaustive
list; new packages may be developed to suit the specific use case better.

Promises and challenges of deep learning in computer-aided drug
design

DL, a subset of ML that utilizes ANNs with multiple layers, has the potential to revolutionize the
field of CADD by harnessing the power of big data and complex models. The ability of DL to learn
intricate patterns and features in large compounds and experimental data datasets can potentially
improve the efficiency and effectiveness of CADD. Although DL is currently revolutionizing the
field of CADD with greater accuracy, DL in CADD is promising in several ways:

* Improved accuracy: DL can improve virtual screening accuracy by identifying patterns and
features in large datasets of compounds that are not easily captured by traditional methods. This
can lead to the identification of new and more potent lead compounds.

* Lead optimization: DL can be used to optimize the properties of lead compounds, such as
binding affinity, selectivity, and pharmacokinetics, by using large datasets obtained from
experimental data and computational simulations. This can aid in improving the efficacy and
lowering the toxicity of lead compounds.

» Virtual screening: DL can also improve the accuracy of virtual screening by identifying patterns
and features in large datasets of compounds that are not easily captured by traditional methods.
This can lead to the identification of new and more potent compounds.

* ADMET prediction: DL can be used to predict lead compounds’ potential toxicity and
pharmacokinetic properties by analyzing large datasets of experimental data and using them to
train models that can predict the ADMET properties of new compounds. The early prediction of
ADMET properties via DL enables the identification of potential risks that can hamper the drug
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discovery process in later stages. Thus, it can help ensure safety, enhance accuracy, and reduce
costly failures in later stages.

Handling large and complex data: DL algorithms can handle large and complex datasets; thus,
they can be used to analyze diverse types of data, such as genomics, proteomics, metabolomics,
and other omics, which can provide valuable insights into drug development.

Target identification: DL can identify potential drug targets by analyzing large datasets of
biological data, such as gene expression data, and using them to train DL models. This can help
to identify new targets and develop new drugs for diseases that have previously been difficult to
treat.

The revolution comes with challenges, so DL is facing a massive challenge for now. However,

it facilitates more features with robust datasets. Here are a few challenges listed-

Data availability: DL models require a large amount of data to train the models. Although the
chemical space of possible drug-like molecules is ~ 10°, there are currently 13,117 FDA-
approved human drugs only because CADD is costly and time-consuming, with an average cost
of $2.6 billion for designing one drug in 10 years. There is a shortage of well-characterized
drug-like molecules upon which the DL models can be trained.

Computational cost: DL models require high-end computational resources to train on, especially
for drug discovery-like tasks where models are large generally because of the high number of
features, for example, molecular descriptors. The specific requirements depend on the model’s
size and complexity and the amount of data used for training.

Data quality: The data used for training DL. models should be high quality, accurate, and
representative of the real-world scenario. However, in drug discovery, data could be noisy,
biased, or incomplete, leading to poor performance of the model and inaccurate predictions.
Data heterogeneity: Drug discovery data can be highly heterogeneous, coming from various
sources such as images, graphs, time-series data (e.g., SMILES strings), and many more making
it challenging to preprocess and integrate the data for DL models.

Model fitting: DL models trained on a specific dataset may not generalize well to test datasets,
the problem, also known as overfitting, is quite common. For drug discovery, there is a shortage
of well-characterized molecules specific to research/target proteins, and it is challenging to
build a model with acceptable accuracy on the train and test data.

Model interpretation: Understanding how a DL. model makes its predictions is crucial for drug
discovery, where the safety and efficacy of drug candidates are critical. However, DL models are
often considered a “black box™ and can be challenging to interpret. For example, DL models in
drug discovery like CNN, recurrent neural network (RNN), and graph neural network (GNN) can
perform feature selection automatically instead of using manually drawn features of molecules.
Safety and ethical concerns: The use of DL in drug discovery raises important ethical and safety
issues, such as ensuring that the models do not perpetuate existing biases, resulting in inaccurate
predictions of potential drug candidates. However, such biases can be controlled by wet-lab
experimental validation using in vitro and in vivo techniques.

Thus we can say that DL can change how we think of drug design, discovery, and development

shortly by its highly robust, precise, and accurate nature. However, at the same time, we must address
the challenges DL poses in drug discovery and development to harness the potential benefits.
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Case studies

In this chapter, we kept four case studies to understand the concept of DL in computer-aided drug
designing better.

Case study #1: “GNNEXPLAINER: an accurate and effective method for
explaining graph neural networks”

GNNs have shown great success in various graph-based tasks, but their decision-making process is often
opaque and difficult to interpret (Jiménez-Luna et al., 2020). This lack of interpretability raises concerns
about the trustworthiness and fairness of the models. A recent study presented GNNEXPLAINER, a
method for explaining GNN predictions for node and graph classification tasks. The authors compare
their method against two alternative baseline approaches: GRAD, a gradient-based method that com-
putes the gradient of the GNN’s loss function concerning the adjacency matrix and the associated node
features, and ATT, a graph attention GNN that learns attention weights for edges in the computation
graph. Another notable contribution of this study is the use of real-world graph classification datasets,
MUTAG and REDDIT-BINARY, which are commonly used in the literature to evaluate the perfor-
mance of GNNs. The results demonstrate that GNNEXPLAINER can provide meaningful explanations
for the predictions made by GNNs on these datasets, which can be helpful for domain experts in under-
standing the underlying patterns and relationships in the data. Overall, the study addresses a significant
challenge in explainable Al by proposing a method for generating explanations for predictions made by
GNNs on graph-structured data. The authors thoroughly evaluate their method on both synthetic and
real-world datasets, and the results demonstrate its effectiveness and accuracy in identifying important
features and structures in the graphs. The qualitative and quantitative analysis of the explanations gener-
ated by GNNEXPLAINER demonstrates its superiority over the baseline approaches.

Case study #2: “CADD techniques and applications in Alzheimer’s drug
discovery”

The use of DL in drug discovery has become increasingly popular in recent years, thanks to the
availability of powerful computing tools such as GPUs (Dorahy et al., 2023). DL involves using
multilayered neural networks to analyze large, multidimensional datasets. In drug design, CNNs are
commonly used to extract features from molecular graphs and predict pharmacokinetic properties or
binding affinities of ligand-protein complexes. DL has shown promising results in predicting blood-
brain barrier permeability, and its applications extend to image recognition and natural language pro-
cessing. Several CADD studies have used various drug targets, such as acetylcholinesterase, seroto-
nin transporter, beta-secretase 1, and glycogen synthase kinase-3, to create multitarget activity
models for new therapeutics. These models have shown promise in identifying ligands with drug
properties and favorable efficacy for further screening. A multitarget activity 3D-QSAR model was
used in a study to identify potential therapeutics for Alzheimer’s disease. The model was built using
IC50 data from ChEMBL, and both multilinear regression and ANN models were used. Ligands
were converted to 3D structures using OpenBabel, and molecular descriptors were generated with
FQSARModel. After validation, ANN models performed better than multilinear regression models
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in virtual screening against over 20,000 compounds from the ZINC database docked against all four
proteins (AChE, SERT BACEI, and GSK3(3). Fifty-seven compounds with drug properties and
favorable ligand efficacy were screened against QSAR models, identifying five promising ligands
that could target at least three of the four proteins involved in Alzheimer’s disease pathology. One
compound called ZINC4027357 demonstrated inhibition of AChE and BACE1; none had inhibitory
properties against SERT or GSK3(3 within selected potencies. CADD is helping to hasten the process
of finding new lead molecules to become approved drugs, and newer techniques, such as DL, are
expected to increase the efficiency with which studies can be carried out.

Case study #3: “Identification of structural motifs in dual-target
compounds using explainable machine learning”

Dual-target compounds have gained increasing attention in drug discovery due to their potential to
treat complex diseases with multiple pathological targets (Feldmann et al., 2021). However, identify-
ing these compounds is challenging due to their complex mechanisms of action and multi-DTIs. In a
study, explainable ML methods were applied to predict dual-target compounds and explore the struc-
tural features that contribute to their activity. The data sets comprising DT-CPDs (dual-target com-
pounds) and corresponding ST-CPDs (single-target compounds) with activity against target pairs 1
(MAOB and A2aR) and 2 (MAOB and AChE) were discerned with the use of balanced random for-
est (BRF) classification models to distinguish. The choice of target pairs was based on specific crite-
ria, comprising sharing a target (MAOB), belonging to different protein classes, and being implicated
in diseases falling into the same medicinal area. Using BRFs allowed for calculating accurate local
SVs (Shapley value) for a model explanation. SV analysis quantifies the assistance of different fea-
tures (e.g., layered atom environments) to a compound’s prediction, encompassing the absence of
certain features, which can help recognize structural motifs characteristic of DT-CPDs. In conclusion,
the study contributed an in-depth investigation to explore the structural motifs signatures of com-
pounds with well-defined activity against more than one target. Highly accurate ML prediction mod-
els were derived for the coinciding target pairs system, and the SV concept was used for model
explanation and extended for global feature analysis. The study identified molecular representation
features that determine ML-based predictions of DT- versus ST-CPDs and quantified the influence of
these features in present and absent test compounds. Small numbers of features whose presence in
DT-CPDs and absence in corresponding ST-CPDs were definitive for accurate predictions, thus pro-
viding apparent grounds for DT activity. These features were specific for overlapping yet unique DT
activities, forming coherent substructures in DT-CPDs. Two structural motifs, caffeine and coumarin
fragments, occurred as largely determined accurate predictions of DT-CPDs and represented charac-
teristic substructures conferring different DT activities. The reproducible analysis scheme applies to
other target combinations and compound features. Further, the same is shown in Fig. 12.4.

Case study #4: “Drug design by machine learning: support vector
machines for pharmaceutical data analysis”

Al and ML methods in the medical field have become increasingly popular in recent years (Staszak
et al., 2022). These methods have been applied in drug discovery, lead optimization and synthesis,
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FIGURE 12.4

Showing the graphical abstract for the case study of explainable machine learning predictions of dual-target
compounds reveal characteristic structural features.

medical image analysis, diabetic diseases, and oncology research. The pharmaceutical industry
has shown particular interest in ML due to the potential for identifying reliable therapeutic infer-
ences that can lead to the development of appropriate drugs. The emergence of high-performance
research approaches in biology and diseases and increased computing capabilities have created
chances to build complex Al systems based on large data sets, including text, images, biometric
data, and multidimensional elements. A study presented the use of support vector machines
(SVMs) to predict the activity of molecules against a specific target, such as an enzyme or recep-
tor, based on their chemical structure and other properties. The advantages of SVMs, including
their ability to handle high-dimensional data, their flexibility in handling different types of data,
and their ability to handle nonlinear relationships between variables, were highlighted. As a
proof-of-concept, a comparison was made based on the performance of three different ML meth-
ods in predicting dihydrofolate reductase (DHFR) inhibition by pyrimidines: SVM, RBF kernel,
and C5.0 decision tree. The SVM method was the most effective deterministic learning algo-
rithm, producing reproducible results with the lowest model error and shortest calculation time
compared to the other two methods. Furthermore, the study suggested that this methodology
could potentially be used to predict the properties of drugs in terms of their toxicity. It is worth
noting that additional validation studies would be necessary to confirm these findings’ generaliz-
ability and assess the performance of these methods on other datasets. Overall, the study provided
some promising results regarding the application of SVMs in drug toxicity prediction, but further
research is needed to confirm and expand upon these findings. Further, the same is shown in
Fig. 12.5.
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Showing the graphical abstract for the case study of machine learning in drug design: use of artificial
intelligence to explore the chemical structure—biological activity relationship.

12.6 Conclusion

Deep learning (DL) is completely revolutionizing the CADD with the advancement of various
structural learning, from finding new druggable targets to screening the drug candidates and show-
casing the best among the library of millions of compounds. It also has a vast potential to minimize
the cost with accuracy for the drug design, and it has been incorporated into clinical trials to make
the process smooth and accurate by removing accessibility errors. After so much advancement,
there is much more to work to make the DL proof, as the traditional methods of many CADD sub-
areas are still questionable.
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