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Exon–intron boundary detection made easy by
physicochemical properties of DNA†

Dinesh Sharma, a Danish Aslam, a Kopal Sharma,a Aditya Mittal a and
B. Jayaram *ab

Genome architecture in eukaryotes exhibits a high degree of complexity. Amidst the numerous

intricacies, the existence of genes as non-continuous stretches composed of exons and introns has

garnered significant attention and curiosity among researchers. Accurate identification of exon–intron

(EI) boundaries is crucial to decipher the molecular biology governing gene expression and regulation.

This includes understanding both normal and aberrant splicing, with aberrant splicing referring to the

abnormal processing of pre-mRNA that leads to improper inclusion or exclusion of exons or introns.

Such splicing events can result in dysfunctional or non-functional proteins, which are often associated

with various diseases. The currently employed frameworks for genomic signals, which aim to identify

exons and introns within a genomic segment, need to be revised primarily due to the lack of a robust

consensus sequence and the limitations posed by the training on available experimental datasets. To

tackle these challenges and capitalize on the understanding that DNA exhibits function-dependent local

physicochemical variations, we present ChemEXIN, an innovative novel method for predicting EI

boundaries. The method utilizes a deep-learning (DL) architecture alongside tri- and tetra-nucleotide-

based structural and energy features. ChemEXIN outperforms existing methods with notable accuracy

and precision. It achieves an accuracy of 92.5% for humans, 79.9% for mice, and 92.0% for worms, along

with precision values of 92.0%, 79.6%, and 91.8% for the same organisms, respectively. These results

represent a significant advancement in EI boundary annotations, with potential implications for

understanding gene expression, regulation, and cellular functions.

Introduction

In the heterogenous world of genomics, eukaryotes stand apart
from prokaryotes with a fascinating twist – their genetic blue-
prints exhibit remarkable complexity.1 Amongst various capti-
vating elements in eukaryotic DNA, the intriguing EI boundary
regions have ignited a blazing spark of interest among
researchers.

A gene in eukaryotes is a discontinuous structure composed
of a protein-coding region (exon) and a non-coding stretch
(intron).2 During the process of gene expression, the introns
are excised from a pre-mRNA after transcription, and the exons
are joined together through splicing in various combinations to
form mature mRNA products.3 These EI boundary sites are
vital for determining the encoded amino acid sequence and

regulating splicing events. These boundaries hold significant
medical importance, as many human genetic disorders and
diseases result from irregular pre-mRNA splicing.4 Thus, the
demarcation of accurate EI architecture is crucial in eukaryotic
genome annotation.

In pursuit of annotating these sites, several attempts have
been made in genomics. In the early stages of exploration,
researchers relied upon the consensus sequence-based
approach.5,6 Scrutinizing the sequences, character by character,
and complementing the findings with the experimental data
provided with the initial patterns for their identification. These
signals, generally known as splice site (SS) motifs, occur in
nucleotide pairs with GT and AG at the 50 and 30 ends of the
intron, respectively.7,8 However, at later stages, the emergence
of cryptic SSs within all the genes of a particular eukaryotic
species and other organisms yielded several diverse consensus
stretches.9–11 The situation is even more complex due to the
prevalence of alternative splicing (AS) in eukaryotes. An indivi-
dual gene can give rise to multiple mRNA isoforms through
AS by selectively including or excluding different exons, creat-
ing an array of potential protein products.12 This remark-
able phenomenon adds another layer of complexity to the
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identification of EI boundaries, as the traditional linear gene
model no longer suffices.

Researchers have recognized the need for a more compre-
hensive and reliable approach. Various computational
approaches, including sequence alignment-based methods,
hidden Markov models (HMMs), and machine learning (ML)
techniques, have long been used to annotate these evasive
boundaries. For instance, some tools leverage scoring matrices
holding valuable sequence pattern information from experi-
mentally verified SSs by identifying conserved nucleotide posi-
tions and their frequencies.13–16 Approaches like Genscan17

and GenomeScan18 incorporate additional information from
known protein sequences to enhance their predictive power.
Advanced algorithms, such as GeneWise,19 Augustus,20

Fgenesh,21 GeneParser,22 and geneid,23 are built using dynamic
programming models employing a data-driven approach to
learn the sequence patterns associated with various genomic
elements, including exons, introns, SSs, and other regulatory
regions critical for gene structure prediction. Spliceator,24 a
recent approach to SS prediction, harnesses the power of the
convolutional neural network (CNN) for its predictive capabil-
ities. The key strength of Spliceator lies in its training process,
which uses validated data from a diverse set of over 100
organisms. While these methods demonstrate substantial pre-
dictive capabilities, their effectiveness relies heavily on the
availability of extensive sequence data, resulting in variable
performance from species to species.13–26

In addition to the aforementioned methods, RNA sequence-
based tools like TopHat,27 SpliceMap,28 MapSplice,29

SplitSeek,30 LEMONS,31 and, SpliceAI32 offer reliable predic-
tions for organisms with or without a reference genome.
Additionally, a recent tool, DeltaSplice,33 helps predict spli-
cing–altering mutations. Though widely used, these tools, too,
fall short when it comes to annotating splice junctions at the
DNA sequence level. Recent exploration of chromatin organiza-
tion and nucleosome positioning approach presents a fresh
perspective.34 It has yet to achieve the desired level of sensitivity
and specificity. Although valuable insights have been gathered
from these studies over the years, it remains clear that novel
ideas and newer models are essential for accurately identifying
EI boundaries at the DNA level as RNA-Seq methods face
challenges,35,36 limiting their accessibility.

It is widely recognized that DNA within our body exhibits
sequence and, more importantly, function-specific local struc-
tural and energetic variations.37–45 These arrangements are
necessary to facilitate several biological processes, such as
protein interactions, gene expressions, etc.46 Investigations on
nucleic acid chemistry have yielded fresh insights into genome
architecture, providing researchers with a new perspective on
annotation. Consistent findings from studies demonstrate that
similar DNA sequences often share similar biophysical proper-
ties. Interestingly, however, it is not always the case, the
alternative sequences can produce DNA molecules that possess
similar structures and energy properties.47,48 This intriguing
phenomenon highlights the complex relationship between
DNA sequences and their resulting physicochemical properties.

Our past research has highlighted the significance of physi-
cochemical properties in the characterization and annotation
of genomic elements within DNA.8,49–59 These findings reveal
that the biophysical signatures of genomic elements are unique
and conserved despite sequence variations at these sites. In line
with this trend, EI boundaries also display distinctive structural
and energy profiles within DNA, distinguishing them from
other genomic regions.8,58 Advancing our exploration further
into EI boundaries, we present a novel approach, ChemEXIN,
which utilizes structural and energy characteristics of DNA to
identify these boundaries. This method capitalizes on molecu-
lar dynamic simulation (MDS) based biophysical features;
encompassing the Backbone, Inter-base pair (BP) organization,
Intra-BP organization, BP-axis and energetics depicted by
hydrogen (H)-bond energy, stacking energy, and solvation
energy of DNA to discern the precise EI junctions. ChemEXIN,
a DL-based method, has undergone dedicated training and
development on EI boundary junctions from the protein-coding
genes in Homo sapiens (H. sapiens), Mus musculus (M. musculus),
and Caenorhabditis elegans (C. elegans). It is openly accessible
on GitHub (https://github.com/rnsharma478/ChemEXIN) and
has been extensively optimized during development using
comprehensive datasets involving rigorous comparisons vis a
vis various classification models.

Further, comparing it against widely adopted DNA
sequence-based methods such as Spliceator, Fgenesh, geneid,
Genscan, and Augustus complements its versatility. While
these tools have been widely used, we found that they exhibit
limitations, particularly in handling larger and more complex
genomic datasets. Spliceator, for example, demonstrated high
misclassification rates, especially with the default reliability
parameter score. This issue resulted in an over-representation
of donor and acceptor SSs, leading to false positives and
decreasing specificity. Similarly, Genscan showed suboptimal
performance in processing large-scale datasets, highlighting a
need for more refined and adaptable models. These challenges
emphasize the potential for improvement in accuracy and
adaptability when integrating ML and DL methods.

Our findings underscore the robustness and broad applic-
ability of ChemEXIN in accurately predicting EI boundaries
across both protein-coding and non-coding genes. This unpre-
cedented performance not only validates the effectiveness of
our approach but also positions it as a significant contributor
to the progression of eukaryotic gene annotation methodolo-
gies concerned at the DNA level.

Methods
EI sequence datasets

From the human genome feature files downloaded from the
GENCODE60 database, we identified and filtered out unique
Exon-Start (ES) and Exon-End (EE) positions from the exons
(both internal and terminal) of all protein-coding genes
(328 368 positions for both ES and EE). Using the human
reference genome, we generated two positive sequence datasets
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around these positions for both ES and EE. Refer to Table S7 of
ESI,† File 3 for genome assembly and annotation information.

The Dataset I consist of 401 nucleotides long 328 368
sequences. These sequences were generated through an extrac-
tion of 200 nucleotides located both upstream and downstream
of the EE, positioned at zero. Similarly, Dataset II was created
by spanning 200 nucleotides upstream and downstream of the
ES. A negative control dataset consisting of 30 140 sequences,
each extending 401 nucleotides, was similarly created using
the coding sequences (CDS). These sequences were extracted
from the middle of exons with a length greater than 1000
nucleotides.

Characterization parameters

For a comprehensive structural depiction of DNA, we have
considered various aspects of its organization, including the
Backbone arrangement defined by alpha, beta, gamma, delta,
epsilon, zeta, chi, phase, and amplitude; Inter-BP arrangements
through shift, slide, rise, tilt, roll, and twist; Intra-BP arrange-
ments encompassing shear, stretch, stagger, buckle, propel,
and opening; and the BP-axis, which takes into account X-
displacement, Y-displacement, inclination, and tip.

In contrast to our previous studies, which relied on X-ray-
derived di-nucleotide data,8,56,57 our current research adopts a
more comprehensive approach. We incorporate neighboring
effects by analyzing the structural attributes of all distinctive
tri-nucleotides to obtain parameter values for the Backbone,
Intra-BP, and BP-axis and unique tetra-nucleotide steps for the
Inter-BP arrangement parameters. The Nucleic Acid Database
(NDB) lacks B-DNA structures encompassing all possible tri-
and tetra-nucleotide steps. Therefore, akin to our recently
published study,58 we rely on atomistic MDS as the sole viable
approach to obtain reliable and transferrable parameters for all
the unique nucleotide steps. To obtain these structural para-
meters, we synthetically designed 13 oligomers and followed
the exact methodology outlined in58,61 and summarized here in
Methodology S4 of ESI,† File 2. For the energy parameters, we
relied upon our in-house lab software to calculate the values of
H-bond energy, stacking energy, and solvation energy over all
instances of tri-nucleotide steps.52

After computing all structural and energy parameters for
each oligomer, we assessed the tri- and tetra-nucleotide steps in
the 50 to 30 direction corresponding to each property. By
averaging these occurrences, we generated comprehensive
parameter value tables (present in ESI,† File 1).

EI boundary junction profiling and visualization

Using the tri- and tetra-nucleotide parameter value tables, every
sequence within each dataset (328 368 ES/EE sequences and
30 140 CDS) was converted to 28 numerical profiles. To attenu-
ate noise arising due to the flanking regions, a moving average
filter of 25 base pairs, established previously in ref. 8 and 56–
58, was employed over the entire length of profiles. Within this
window, the values were averaged, resulting in a single value for
each position. The resulting 374 and 373 long numerical
profiles corresponding to the tri- and tetra-nucleotide

parameters represented the parameter trend over the sequence.
Thereafter, a min–max normalization was applied over these
profiles, ensuring all values fell within a standardized range of
zero to one.58

A visual representation of these profiles was achieved by
creating two categories of plots for both the ES and EE para-
meters. In the first category, all 28 discrete properties belonging
to the structural and energy class were averaged across all
positions over all the sequences. This yielded a single curve
for each parameter that was plotted at the ES and EE and was
compared with their corresponding CDS profiles. In the second
category, numerical profiles of the structural parameters within
a specific class (Backbone, Inter-BP, Intra-BP, and BP-axis) were
combined by doing a position-based averaging for all the
normalized structural profiles (generated during the first visua-
lization step) within a major category. The structural grouping
brings forward the synergistic effects of parameters within that
group and generates a single curve corresponding to the four
structural classes. All these structural profiles were then plotted
along with the energy profiles (the three energy parameters
represent different aspects, so they were kept separate). This
visualization allowed us to observe the actual trends in Back-
bone, Inter-BP, Intra-BP, and BP-axis organizations along with
the energetic drifts.

Formulation of training datasets

For all the ES and EE sequences, the combined seven numerical
profiles were processed to extract a segment of length 50,
ranging from position 158 to 207 (this segment represented
the exon to intron and intron to exon transitions, and the
segment length was uniform throughout all profiles). These
segments, during visualization, displayed a distinctive pattern
to that of the CDS. These three contrasting patterns within the
EI transitions and CDS profiles acted as target classes for our
prediction models.

To incorporate contrasting features, the seven parameter
profiles from the CDS were generated. However, this time, we
employed a slightly different approach to capture the sequence
characteristics and eliminated bias from a lower count of CDS
(30 140). Since all the profiles of CDS had a smooth trend
throughout their entire length, we extracted seven non-
overlapping numerical fragments, each 50 in length. This
extraction followed an organized, non-redundant approach,
starting from position one and advancing in increments of 50
nucleotides (e.g., from position one to position 50, position 51
to position 100, and so forth, ultimately resulting in the final
fragment spanning from position 301 to position 350). Conse-
quently, this method yielded a negative training dataset com-
prising 210 980 CDS corresponding to the seven final
parameters.

Training pipeline

The entire approach employed for ChemEXIN is outlined as a
framework in Fig. 4. Before advancing to the training phase,
our analysis commenced with investigating the correlations
among the final parameters. This preliminary step aimed to
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elucidate the relationships and potential interdependencies
between the parameters, providing valuable insights into their
collective behavior. Correlation analyses conducted on the 50-
length segment for both ES and EE datasets yielded diverse
levels of correlation among different pairs of parameters. None-
theless, these correlations were not much pronounced, except
for a few cases observed in both datasets. A feature importance
analysis was performed to strengthen the conclusions further.
Consequently, for the scope of this study, all seven individual
parameters (four structural and three energetic) were consid-
ered, and the positive (ES/EE) and negative (CDS) datasets were
integrated into a single training sequence file. To get a vigorous
prediction pipeline, instead of averaging the 50 values extracted
from the numerical profiles of each parameter, all 50 values
corresponding to each of the seven primary categories were
treated as distinct features. This method retained the full
spectrum of information within each category and thus pro-
vided us with 350 derived features (50 numerical values corres-
ponding to each category) for each sequence. Advancing
towards the training process, the integrated three-dimensional
(3D) dataset comprising B850 000 sequences was categorized
into three classes: 0 for CDS, 1 for ES, and 2 for EE. These
sequences were then separated into smaller datasets for exten-
sive training-testing and evaluation. 60 000 sequences having
an equal proportion of CDS, ES, and EE were chosen randomly
from their respective classes and constituted the blind evalua-
tion dataset. The remaining sequences, after randomization,
which ensured unbiasedness, were subjected to a classical 80–
20 split to create training-testing datasets. Various ML/DL
methods were deployed over these human datasets, and the
results were compared. By employing multiple models rather
than relying on one, we tried to strengthen the idea that the
physicochemical profiles observed at the EI boundaries play a
crucial role in predictions, irrespective of the models.

Starting here, we integrated two additional eukaryotes,
namely M. musculus and C. elegans (biophysical profiles at EI
sites of these organisms are presented in Fig. S3 and S4 of ESI,†
File 4). This approach involved a similar EI and CDS sequence
extraction (information detailed in Table S7 of ESI,† File 3) and
training-testing split alongside an independent extraction of a
benchmarking set. This set comprised 2000 sequences each for
ES and EE for each organism. Skipping the organism-specific
model evaluation for mice and worm genomes, the best-
performing model in humans was deployed for these organ-
isms. Further, to maintain linearity across organisms from the
evaluation dataset corresponding to H. sapiens, 2000 random
ES and EE sequences from this set were selected as a separate
benchmarking set for humans.

Moreover, given the distinct genomic structures across
different kingdoms, we focused on species within the same
kingdom for this study. While we profiled and visualized the EI
boundaries of organisms from other kingdoms, such as Plas-
modium falciparum (Protista), Saccharomyces cerevisiae (Fungi),
and Arabidopsis thaliana (Plantae), the results (Fig. S5–S7 of
ESI,† File 4) indicated that different model adaptations are
required for these organisms. Therefore, incorporating these

organisms into the current framework was beyond the scope of
this study. However, we are actively working on addressing
these challenges in the subsequent version of ChemEXIN to
expand its applicability to a broader range of species.

Evaluation and comparison with the state-of-the-art

To assess our trained method, which includes models from
H. sapiens, M. musculus, and C. elegans, we benchmarked it
against five widely used gene annotation tools specific to DNA
sequences. This state-of-the-art comparison against tools spe-
cific to DNA sequences was conducted using the organism-
specific benchmarking datasets. Due to limitations of RNA-
based biophysical characterization, annotation tools specific to
other sequences (transcripts) were not benchmarked against
our approach.

Additionally, an advanced comparison between the two top-
performing tools and the final model was conducted using non-
protein coding gene datasets. These datasets encompass
sequences devoid of prior training, thus offering a rigorous
evaluation of the efficacy and adaptability of our biophysical-
based prediction approach.

Prediction methodology

Moving ahead with creating a novel biophysical parameters-
based EI boundary prediction tool, we integrated the three
benchmarked models into an easy-to-use programmed pipe-
line. This OS-independent pipeline, developed entirely in
Python 3, is accessible as a command-line tool and is publicly
available on GitHub. The exact methodology during a predic-
tion involves validating the input sequence length and char-
acters and then converting the input sequence into seven
numerical profiles corresponding to the combined major cate-
gories. Subsequently, a transient data frame with an organiza-
tion similar to our training-testing dataset is created at the
backend. This data frame then employs the organism-specific
models and the reliability threshold value chosen by the user in
addition to the sequence input step. The predictions from the
employed models pass through various filters to provide the
user with the final EI boundary sites organized in an output file.
The detailed prediction pipeline and all the filtering steps are
available in the user manual (ESI,† File 5). To test the working
of the developed pipeline and its cross-platform functionality,
predictions were made by ChemEXIN on varying-length genes
from the three organisms in consideration.

Results and discussion
Physicochemical profiles at the EI boundaries

Fig. 1 and Fig. S1, S2 (ESI,† File 4) depict the numerical profiles
of all 28 parameters, including the nine Backbone angle para-
meters, six Inter-BP parameters, six Intra-BP parameters, four
BP-axis parameters, and three energy parameters. These pro-
files were generated for ES, EE sequences, and CDS in
H. sapiens. The results of this study indicate that the physico-
chemical profiles at both ES and EE sequences display unique
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patterns, which differ significantly from those observed in CDS.
The results demonstrate that while the structural and energy
properties of the CDS remain relatively constant throughout the
sequences, a distinct shift occurs in the biophysical profiles at
the EI boundary. The structural trends observed at the EI sites
for each parameter emphasize the presence of a transient
thermodynamically unstable boundary. This boundary may be
crucial for facilitating classical splicing events, with exons
demonstrating higher stability than neighboring intronic
sites.59,62 Additionally, the energy plots at the EI junctions
within these DNA sequences support the classical hypothesis
that boundary elements might play a crucial role in secondary
structure formation in RNA, thereby facilitating splicing.7 The
H-bond energy exhibited a rapid rise followed by a drop,
implying an initial instability at the boundary position that
gradually balances out as the junction site progresses. In
contrast, the stacking energy reached its maximum value at

the border junction, attributing to an increased flexibility in the
DNA by reducing its stiffness. The observed decreased solvation
energy could indicate the transiently formed stable structure at
the interfaces between exons and introns.

Moving with the idea that the combined effect of smaller
features brings about a concerted change, we combined the
individual structural parameters belonging to the respective
major categories to provide us with the actual Backbone, Inter-
BP, Intra-BP, and BP-axis profiles. The synergistic visualization
of these categories and the three energy parameters at the exon
junctions are available in Fig. 2. These results provide us with
the evident change at the boundaries for the seven structural
and energy parameters. Trends, initially widespread over a
region of 50–100 length (Fig. 1) within the individual para-
meters, are now contained uniformly within a region of B50 for
all the categories.

The shaded region within the combined plots shows the site
undergoing major structural and energy changes. Together,
these individual and combined profiles offer valuable insights
into the potential utility of the combined parameters for
effective EI boundary identification within any given gene
sequence.

Correlation analyses and feature importance

A correlation analysis was conducted to examine the interrela-
tionships among the seven final parameters within the 50
nucleotide regions of both the ES and EE profiles in humans.
The primary objective of these analyses was to assess the degree
of correlation between parameters and identify any redundancy
that may exist. Fig. 3 shows the correlation results. Different
pairs of parameters exhibited varying degrees of correlation,
ranging from moderate to high. Some parameters were depen-
dent on each other, while others showed no correlation.
Furthermore, an examination of feature importance through
principal component analysis (PCA) was performed to retain
the significant features without compromising on information
for the downstream analysis. As summarized in Fig. 3 and
Methodology S1 of ESI,† File 2, these results emphasized the
significance of using all the seven parameters. The framework,
as outlined in Fig. 4, was thus followed, leading to the devel-
opment of the novel physicochemical property-based EI bound-
ary prediction method, ChemEXIN.

Performance evaluation

To arrive at an optimal EI boundary prediction method, various
ML/DL models were deployed during the initial development
phase of ChemEXIN. The performance of these models under-
went comparison using both the training-testing dataset and
the evaluation dataset in humans. Model assessment and
comparison were conducted using five key criteria: sensitivity,
specificity, F1-score, precision, and accuracy. The conclusive
results of the training-testing are presented in Table S1 of ESI,†
File 3. These results indicate that all the models exhibit the
capability to predict EI boundary sites, with accuracy levels and
F1-scores spanning from 53% when utilizing basic models to an
improved performance of B80% when employing DL model on

Fig. 1 Profiles of 28 normalized structural and energetic parameters for
the three regions. (A) Exon-Start, (B) Exon-End, and (C) CDS regions. Each
line represents a different structural or energetic parameter. These para-
meters show distinct shifts in their profiles at the boundary regions (Exon-
Start (ES) and Exon-End (EE)), while the patterns appear stable throughout
the CDS regions.
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Fig. 2 Profiles of the seven normalized structural and energetic parameters at the EI junctions. (A) Exon-Start (ES), (B) Exon-End (EE). Each line
represents a major structural or energetic parameter. The four structural parameters were obtained by combining the individual parameters within that
category. These parameters show the actual structural and energy change at the two boundaries.

Fig. 3 Correlation and feature importance analyses. (A) Correlation matrices depicting the relationships among the seven final parameters at Exon-Start
(ES) and Exon-End (EE). (B) Feature importance analysis conducted through principal component analysis (PCA), revealing significant contributions of all
the seven parameters.
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the test set. On the same dataset, it is worth noticing that
parameters such as specificity, which examines the model’s
ability to accurately detect true negatives, and sensitivity (true

positive rate or recall), which evaluates the system’s proficiency
in predicting true positives within each category or class,
demonstrated notably strong performance values.

Fig. 4 A detailed framework highlighting the development of ChemEXIN.
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The findings from the H. sapiens evaluation set comprising
60 000 held-out sequences further validate the efficacy of utiliz-
ing biophysical parameters for accurately identifying boundary
regions (Table S1, ESI,† File 3). To optimize the performance,
we are exploring the inclusion of physicochemical profiles at
the pre-mRNA level. By capturing these biophysical features,
which reflect structural and energetic variations in the RNA
sequences, we anticipate that the model’s predictive power
could be enhanced. Additionally, we are investigating the
integration of more advanced model architectures, including
hybrid models that combine DL with other ML techniques.
These innovations aim to further refine the model’s ability to
capture complex patterns, improving prediction accuracy and
making it applicable to a broader range of species.

Moving further with our predictive analysis, the area under
the receiver operating characteristic curve (AUROC) scores on
the evaluation dataset presented in Fig. 5 show that the 3D-
CNN and support vector machine (SVM) classifiers surpass
other models in predictive performance across all three classes.
Notably, the 3D-CNN exhibits higher area under the curve
(AUC) values across all classes, signifying its efficacy in distin-
guishing between diverse classes. Following the comparison
results of the above models and the 3D nature of our datasets,
we decided to proceed with the 3D-CNN63 trained model for
subsequent analysis and its independent implementation in all
three organisms under study. The architecture of the 3D-CNN
model employed here is detailed in Fig. 6 and Methodology S2
of ESI,† File 2.

Comparison with the state-of-the-art tools

Five widely used DNA sequence-based gene structure organiza-
tion prediction tools—Spliceator, Fgenesh, geneid, Genscan,
and Augustus, were benchmarked against each of our three
organism-specific trained models. The results are presented in
Fig. 7 and Tables S3–S5 of ESI,† File 3, with details on the

outputs available in Methodology S3 of ESI,† File 2. To ensure
an unbiased comparison of our approach, we used three
benchmarking datasets, each comprising 2000 randomly
selected sequences from the respective organism. Most of these
tools are available as web servers, which tend to crash on large
input sequences and/or require input sequences in batches.
Henceforth, this reasonable-sized comparison data ensured the
efficient working of all the tools.

Spliceator, available as a web server,24 employs CNN in
conjunction with a user-defined reliability parameter and a
sequence search window to predict the gene organization
within input DNA sequences. Instead of treating individual
input sequences separately, it processes them as a unified
input string with a maximum length of approximately 200 500
bases. To adhere to this constraint, we divided the input
sequences for ES and EE for organisms under study into two
batches. We employed a default reliability parameter score of
98% and a model tailored to a 400-length search window (as
our individual input sequences are 401 nucleotides long) to
predict donor and acceptor sites. The output files obtained for
each batch were combined into their respective categories and
processed to provide a final confusion matrix. From the results,
it is evident that Spliceator results are less than satisfactory for
all three organisms. The observed high level of misclassifica-
tion is primarily attributed to Spliceator’s consensus-based
approach to identifying donor and acceptor sites, resulting in
an over-representation of these sites in the predictions. This
over-representation tends to increase with a decrease in the
reliability parameter score due to non-specific pattern match-
ing. Moreover, there is no noticeable improvement at a 100%
reliability parameter score, suggesting its high sequence
specificity.

Fgenesh is available both as a web server and as a local
downloadable version. Due to the requirement of several geno-
mic feature files in processing the downloadable version, we

Fig. 5 Area Under the Receiver Operating Characteristic curve (AUROC) depicting AUC scores for all three classes. (A) CDS: 0, (B) Exon-Start (ES): 1, and
(C) Exon-End (EE): 2 across all classifiers employed over the blind evaluation set. The classifiers used are DT: decision tree, GB: gradient boosting, K-NN:
K-nearest neighbors, LR: logistic regression, RF: random forest, SVM: support vector machine, 3D-CNN: 3D convolutional neural network.
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tested our sequence with the online web server.21 The method
accepts a single file as input, with each sequence represented in
FASTA format. In addition to a HMM based gene prediction
model trained over several eukaryotic species, though not
within the scope of our research, it provides numerous user-
specific advanced options. Operating it with organism-specific
default parameters, the method generated output files, which
were then processed into a confusion matrix. Similar to Spli-
ceator, Fgenesh yielded comparable results for C. elegans and
M. musculus. However, for humans, the precision and accuracy
notably improved, reaching close to 40%. Although there is a
potential for improved outcomes by utilizing targeted training
with specific feature files in the downloadable version (Fge-
nesh++), we opted not to pursue these advanced options.

geneid, another tool in our evaluation, employs position
weight arrays, scoring, and Markov models to identify gene
features in DNA sequences. Although available as a web server
and a GitHub repository,23 we faced challenges with the online
version, prompting us to resort to the local version downloaded
from GitHub.23 Despite processing input sequences in a man-
ner similar to Fgenesh, the processed results more closely

resemble those of Spliceator, exhibiting a high misclassifica-
tion rate ranging from 80% to 90% for the organisms under
consideration. The misclassification observed can be attributed
to the overrepresentation of the ES and EE sites. Regardless of
being trained on multiple species from all four eukaryotic
kingdoms, geneid did not yield satisfactory results in our study.

Continuing our benchmarking efforts, we evaluated Gen-
scan, a widely used tool for identifying EI structures in genomic
sequences. Genscan17 employs general probabilistic models to
annotate gene features within input sequences. While Genscan
can process nearly one million bases, our dataset, comprising
approximately 0.8 million bases, posed a challenge to its
processing capabilities. Hence, following a similar strategy
employed with Spliceator, we partitioned the input sequences
into two batches for both the ES and EE. Regrettably, akin to
the outcomes observed with the other tools, the results were not
encouraging.

Transitioning to our last tool, Augustus, our objective was to
evaluate its proficiency in predicting gene structures. Beyond
being accessible as a straightforward pre-trained web server
and a GitHub repository, Augustus offers an improved web

Fig. 6 3D-CNN architecture employed in ChemEXIN. The architecture was designed over the human model and replicated directly for mice and worms.
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server option. This server allows training sequences not listed
in their database using annotation files containing information
for cDNA sequences and/or hints for donor and acceptor sites
(hint files). We utilized the pre-trained web server20 and pre-
pared a basic hint file (GFF) for input sequences (FASTA),
adhering to the required format. Using a generalized HMM
with an additional probabilistic model for gene structure pre-
diction, Augustus also provides information on alternative SSs.
Augustus exhibited relatively favorable performance compared
to other tools, achieving a specificity of approximately 85%,
notably attributed to the utilization of a hint file. In the case of
humans, the misclassification rate decreased significantly to
approximately 45%. However, while a similar trend was
observed for other organisms, the outcomes were less
favorable.

In a similar manner to the above-reported comparisons, we
examined how well our models performed by looking at their
predictions on the benchmarking datasets. This evaluation was
essential for understanding how accurately the approach could
predict EI boundaries. The analysis unequivocally demon-
strates that our approach clearly outperforms other tools
(Fig. 7) across all major evaluation criteria in all three organ-
isms. The results indicate a notably low misclassification rate,
ranging approximately from 0.075 to 0.20, and high precision,
ranging from approximately 0.796 to 0.92. These findings
indicate the reliability and accuracy of the predictions obtained
through our technique. This exhaustive comparison under-
scores the presence of substantial sequence alternatives. How-
ever, despite these variations, the biophysical profiles at the

junction sites remain largely conserved. This conservation
suggests the potential utility of these profiles in facilitating
precise recognition and prediction by the physicochemical
property-driven 3D-CNN models.

Expanding the scope of our comparison, we further assessed
the performance of the reported method alongside two top-
performing tools identified in the previous benchmarking step,
namely Fgenesh and Augustus. This extended comparison
focused on predicting EI junctions in non-protein coding
genes, including lncRNA genes; tRNA genes; and rRNA genes
in humans.

Despite its widespread usage, Fgenesh failed to generate
results in our comparative assessment. Unlike Augustus, while
our method has not undergone specific training on the EI
characteristics of these genes, the results documented in
Table 1 and Fig. 8 underscore a notable performance of our
framework against Augustus. As evident, Augustus shows
higher specificity for EI boundary predictions in tRNA
(76.8%), it achieves significantly lower sensitivity (20.0%) com-
pared to ChemEXIN (49.6%). This indicates that Augustus is
more conservative in predicting EI boundaries in tRNA, result-
ing in fewer false positives but missing many true positives. In
contrast, ChemEXIN strikes a better balance with higher sensi-
tivity (49.6%) and precision (52.6%), allowing it to correctly
identify more true boundaries in tRNA while maintaining
relatively few false positives. This leads to a higher F1 score
for ChemEXIN (51.0%) compared to Augustus (28.3%). While
differences in EI boundary predictions of tRNA are modest,
ChemEXIN outperforms Augustus in other gene categories,

Table 1 Comparison of methods using untrained non-protein coding human genes (lncRNA, tRNA, and rRNA)

Method
Gene
category

True
positive

False
positive

True
negative

False
negative

Sensitivity
(%)

Specificity
(%)

F1-Score
(%)

Precision
(%)

Accuracy
(%)

ChemEXIN lncRNA 161 178 169 171 48.5 48.7 48.0 47.5 48.6
tRNA 122 110 146 124 49.6 57.0 51.0 52.6 53.4
rRNA 84 113 83 94 47.2 42.3 44.8 42.6 44.7

Augustus lncRNA 110 330 268 504 17.9 44.8 20.9 25.0 31.2
tRNA 82 88 292 328 20.0 76.8 28.3 48.2 47.3
rRNA 88 90 184 414 17.5 67.2 25.9 49.4 35.1

Fig. 7 Heatmaps depicting the performance of all methods across all three organisms. (A) H. sapiens (B) M. musculus (C) C. elegans.
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highlighting its broader applicability and robustness in EI
boundary prediction indicating its adaptability and efficacy
even in contexts beyond its specialized training domain. This
establishes the robustness and versatility of our approach,
particularly in addressing gene prediction tasks across varied
genomic contexts.

Leveraging biophysical parameters and the DL method, the
approach exhibited superior performance compared to existing
gene annotation tools across the three organisms. Moving
forward, we developed ChemEXIN, a consolidated prediction
framework combining the three organism-specific pre-trained
3D-CNN models and additional prediction filters (ESI,† File 5).
This approach holds significant potential for enhancing the
efficiency of EI boundary annotation.

While ChemEXIN demonstrates robust performance, exist-
ing tools like Spliceator, Fgenesh, geneid, Genscan, and Augus-
tus have room for improvement in addressing issues such as
the over-representation of SS predictions. A multi-faceted
approach could address the weaknesses related to the over-
representation of predictions in these tools. For example,
incorporating biological context through a post-prediction

filtering step using experimentally validated datasets could
further enhance the precision of SS identification. Another
avenue to improve these tools is by increasing their adaptabil-
ity. Providing organism-specific models as used by Fgenesh,
geneid, Genscan, and Augustus would allow Spliceator to
obtain relevant features from diverse datasets, making it more
adaptable to different organisms and integrating a customiza-
tion layer to its DL architecture. Furthermore, enhancing user
guidance on adapting tools to new sequences—including cur-
ating hint files (already used in the case of Augustus) and
customizing settings based on preliminary analyses—could
improve adaptability and ensure more accurate results from
these tools.

EI boundary prediction through ChemEXIN

ChemEXIN, available as an open-source tool, can be down-
loaded and used within a conda environment, offering an
accessible platform for researchers. After the initial setup of
the virtual environment through cloning, users can activate and
run ChemEXIN using a Python 3 interpreter via a command
prompt. This process involves providing essential inputs: a file
containing the gene sequence of interest, the associated organ-
ism, and a threshold value that defines the probability at which
prediction windows are refined. Upon receiving these inputs,
ChemEXIN performs its analysis and delivers the prediction
results in a comma-delimited file. For detailed instructions on
setting up and using ChemEXIN, researchers can refer to the
user manual (ESI,† File 5).

To assess the performance speed of ChemEXIN, we tested it
on random gene sequences of varying lengths from the studied
organisms, using a default probability score of 0.75. The
specific outcomes of this analysis are cataloged in Table 2.
Additionally, to assess ChemEXIN’s compatibility across differ-
ent computing environments, we executed predictions on the
same gene set but on systems with various configurations. The
results of this compatibility assessment are detailed in Table S6
of ESI,† File 3. Collectively, these results demonstrate that
ChemEXIN is highly efficient in processing sequences of
diverse lengths, a feat it accomplishes using minimal computa-
tional resources and without depending on the operating

Fig. 8 Performance evaluation of ChemEXIN against Augustus on non-
protein coding gene datasets. (A) ChemEXIN, (B) Augustus.

Table 2 Speed evaluation of ChemEXIN on random genes in humans and
mice

Organism Gene Lengtha (nt)
Predicted
sites

Average
timeb (s)

H. sapiens DMDc 2 220 382 47 221.77
BDNFd 188 307 28 24.84
NEU1e 10 881 8 8.24

M. musculus RP1f 409 685 26 41.30
CDKg 189 524 9 22.46
SCAF8h 83 888 15 12.78

a Nucleotides. b Average processing time over three operating systems
(Windows 10, Linux Ubuntu 22.04, and macOS 14) in seconds. c Dys-
trophin (muscular dystrophy, Duchenne and Becker types). d Brain-derived
neurotrophic factor. e Neuraminidase-1. f Retinitis Pigmentosa-1. g Cyclin-
dependent-kinase 6. h SR-related CTD associated factor-8.
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system (OS). A detailed examination of our prediction out-
comes, particularly with H. sapiens and M. musculus gene
sequences, reveals that a significant number of EI boundary
sites are predicted with remarkable accuracy. This strong
performance can be attributed to the similarity in the biophy-
sical profiles at the EI boundaries of humans and mice, where
the structural and energetic properties of DNA at these sites
closely resemble each other (Fig. 2 and Fig. S3 of ESI,† File 4).
The genetic similarity between humans and mice, with approxi-
mately 85–90% of their genes being conserved,64,65 may con-
tribute to the model’s ability to generalize effectively across
these species. This shared genetic basis could be one of the
factors that support the model’s strong performance in both
organisms. Even in instances where predictions deviate, they
do so by a margin of only five to ten nucleotides from the
established boundary windows, further supporting the model’s
ability to generalize across these species. Although the C.
elegans model showed promising results, its predictions
demonstrated relatively lower reliability compared to the other
two organisms and were therefore not included in the reported
results. This discrepancy is likely due to the distinct biophysical
profiles at the EI boundaries in C. elegans, which differ from
those in humans and mice (Fig. S4 of ESI,† File 4). These
differences could have influenced the model’s performance.
Additionally, challenges such as imbalanced positive and nega-
tive datasets may have contributed to this outcome. To address
these challenges, we are actively refining the model by improv-
ing the filters, extending the training process, and optimizing
the model’s parameters. Furthermore, we are working to
expand ChemEXIN’s applicability by incorporating species
from different kingdoms (biophysical profiles of some of these
organisms are shown in Fig. S5–S7 of ESI,† File 4), enhancing
its generalizability across a wider range of eukaryotes. These
ongoing improvements are expected to enhance ChemEXIN’s
performance in future versions.

Conclusion

This study introduces ChemEXIN, a novel tool that integrates
biophysical parameters with DL to predict EI boundaries at the
DNA level with enhanced accuracy across eukaryotic species.
Our analysis of structural and energy profiles at the EI bound-
aries in multiple organisms revealed distinct physicochemical
patterns essential for their recognition. By incorporating these
insights, ChemEXIN outperforms existing DNA-based gene
prediction tools, demonstrating superior precision in boundary
identification.

ChemEXIN’s integration with refinement filters further
optimizes its usability, offering a user-friendly platform that
efficiently processes gene sequences with minimal computa-
tional demands. Its open-source nature and adaptability across
various genomic contexts position ChemEXIN as a valuable
resource for the research community, advancing our under-
standing of gene architecture and enabling precise EI boundary
annotations.

Looking ahead, we recognize the importance of increasing
ChemEXIN’s scope by training models on a broader range of
species while also expanding its capabilities to predict AS sites.
To achieve this, we plan to inspect the biophysical profiles of
the organisms at the pre-mRNA level and integrate them with
DNA profiles in a bottom-up approach. We speculate that this
strategy will not only enhance ChemEXIN’s predictive accuracy
but also facilitate the identification of AS sites, further refining
its performance. By broadening its applicability across diverse
species and genomic elements, ChemEXIN sets a new bench-
mark for integrating physicochemical properties in gene
prediction tasks, offering significant potential for future appli-
cations in molecular biology and genomic research.
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23 E. Blanco, G. Parra and R. Guigó, Using geneid to identify genes,
Curr. Protoc. Bioinf., 2007, DOI: 10.1002/0471250953.bi0403s18.

24 N. Scalzitti, A. Kress, R. Orhand, T. Weber, L. Moulinier,
A. Jeannin-Girardon and J. D. Thompson, Spliceator: multi-
species splice site prediction using convolutional neural
networks, BMC Bioinf., 2021, 22, 1–26.

25 G. F. Ejigu and J. Jung, Review on the computational
genome annotation of sequences obtained by next-
generation sequencing, Biology, 2020, 9(9), 295.

26 Z. Chen, N. U. Ain, Q. Zhao and X. Zhang, From tradition to
innovation: conventional and deep learning frameworks in
genome annotation, Briefings Bioinf., 2024, 25(3), bbae138.

27 C. Trapnell, L. Pachter and S. L. Salzberg, TopHat: discover-
ing splice junctions with RNA-Seq, Bioinformatics, 2009,
25(9), 1105–1111.

28 K. F. Au, H. Jiang, L. Lin, Y. Xing and W. H. Wong, Detection
of splice junctions from paired-end RNA-seq data by Spli-
ceMap, Nucleic Acids Res., 2010, 38(14), 4570–4578.

29 K. Wang, D. Singh, Z. Zeng, S. J. Coleman, Y. Huang,
G. L. Savich and J. Liu, MapSplice: accurate mapping of
RNA-seq reads for splice junction discovery, Nucleic Acids
Res., 2010, 38(18), e178–e178.

30 A. Ameur, A. Wetterbom, L. Feuk and U. Gyllensten, Global
and unbiased detection of splice junctions from RNA-seq
data, Genome Biol., 2010, 11, 1–9.

31 L. Levin, D. Bar-Yaacov, A. Bouskila, M. Chorev, L. Carmel
and D. Mishmar, LEMONS–a tool for the identification of
splice junctions in transcriptomes of organisms lacking
reference genomes, PLoS One, 2015, 10(11), e0143329.

32 K. Jaganathan, S. K. Panagiotopoulou, J. F. McRae,
S. F. Darbandi, D. Knowles, Y. I. Li and K. K. H. Farh,
Predicting splicing from primary sequence with deep learn-
ing, Cell, 2019, 176(3), 535–548.

33 C. Xu, S. Bao, Y. Wang, W. Li, H. Chen, Y. Shen and
C. Zhang, Reference-informed prediction of alternative spli-
cing and splicing-altering mutations from sequences, Gen-
ome Res., 2024, 34(7), 1052–1065.

34 J. A. Fincher, G. S. Tyson and J. H. Dennis, DNA-Encoded Chro-
matin Structural Intron Boundary Signals Identify Conserved Genes
with Common Function, Int. J. Genomics, 2015, 2015(1), 167578.

35 F. Geraci, I. Saha and M. Bianchini, RNA-Seq analysis: methods,
applications and challenges, Front. Genet., 2020, 11, 220.

36 H. Satam, K. Joshi, U. Mangrolia, S. Waghoo, G. Zaidi,
S. Rawool and S. K. Malonia, Next-generation sequencing
technology: current trends and advancements, Biology,
2023, 12(7), 997.

Molecular Omics Research Article

Pu
bl

is
he

d 
on

 1
1 

M
ar

ch
 2

02
5.

 D
ow

nl
oa

de
d 

by
 I

nd
ia

n 
In

st
itu

te
 o

f 
T

ec
hn

ol
og

y 
N

ew
 D

el
hi

 o
n 

5/
30

/2
02

5 
11

:1
5:

22
 A

M
. 

View Article Online

https://doi.org/10.1002/0471250953.bi0403s18
https://doi.org/10.1039/d4mo00241e


This journal is © The Royal Society of Chemistry 2025 Mol. Omics, 2025, 21, 226–239 |  239

37 R. E. Dickerson and H. R. Drew, Structure of a B-DNA
dodecamer: II. Influence of base sequence on helix struc-
ture, J. Mol. Biol., 1981, 149(4), 761–786.
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